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Abstract 

Cr, 

As the complexity of high-performance microprocessor in- 
creases, functional verification becomes more and more dif- 
ficult and RTL simulation emerges as the bottleneck of the 
design cycle. In this paper, we suggest C language-based de- 
sign and verification methodology to enhance the simulation 
speed instead of the conventional HDL-based methodologies. 
RTL C model(StreC7) describes the cycle-based behaviors of 
synchronous circuits and is followed by model refining and 
optimization using LifeTime Analyzer( LTA) and Cleanscr. 
The simulation speed of cycle-based C model makes it pos- 
sible to test the RTL design with the L‘real-world” applica- 
tion programs in the order-of-magnitude faster speed than 
the commercial event-driven simulators. Using the proposed 
functional verification methodology, HK486, an intel 80486 
- compatible microprocessor was successfully designed and 
verified. 
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1 Introduction 

The advancement of semiconductor technology has made it 
feasible to integrate more than ten million transistors on 
a single chip and to operate at  a clock speed more than 
300MHz . This astounding design complexity has resulted in 
the verification challenge of microprocessor both in academia 
and industry[l, 2, 31. The hardware emulation[4], hard- 
ware acceleration[5], formal verification[l] and cycle-based 
simulation[6] have become the state-of-the-art verification 
methodologies. The cost of emulation hardware is very ex- 
pensive and it requires that the gate level design is already 
finished. Therefore, it is generally used for the purpose of 
final verification before tape-out rather than for the early 
design phase. Formal verification method has been used 
successfully to verify a wide variety of moderate-sized hard- 
ware designs[7]. The industry is beginning to look at  formal 
verification as an alternative to the simulation for obtain- 
ing higher assurance than is currently possible. Despite the 
great increases in the number of organizations and projects 
applying formal methods, formal verification is still the case 
that the vast majority of potential users of formal methods 
fail to become actual users[8]. 

The hardware description language(HDL) such as VHDL 
and Verilog is a convenient method to describe a hardware 
and becomes a good bridge between RTL(Register Trans- 
fer Level) description and logic synthesis. But most of the 
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design time is consumed by simulation rather than the de- 
scription itself. A cycle-based simulation[6] and compiled- 
code simulator[9] shows a clear simulation performance ad- 
vantage over an event-driven simulator[lO]. But, the general 
purpose Verilog simulator is too slow to be used as a system- 
level simulation. 

In the description of the RTL synchronous circuit, we 
use “C” language rather than Verilog-HDL. Therefore, there 
is no need to translate Verilog model into intermediate C 
code unlike cycle-based or compiled-code simulator. On the 
other hand, in the descrcption of the hardware using C, de- 
signers should take extreme care in considering static signal 
scheduling and timing issues such as inappropriate usage of 
flip-flops or latches, asynchronous, combinational loops, and 
other potential timing bugs, which are not easily discov- 
ered in cycle-based simulation. To eradicate the hardware- 
unimplementable descriptions, we devise a “LTA(LifeTime 
Analyzer)”, and “Cleaner” which refines and optimizes the 
C model based on SFG(signa1 flow graph) of the RTL de- 
sign. This approach removes the discrepancy between C 
model and real hardware, and results in significant simula- 
tion speed-up. 

We will show the performance of our C-based simulator 
compared to other HDL simulators using HK486, an intel 
80486-compatible microprocessor as an example. 

This paper is organized as follows. We describe our de- 
sign verification methodology in section 2. A proposed RTL 
C-based synchronous circuit design and related problems are 
shown in section 3 .  Section 4 deals with the productivity 
issues in simulation. Finally, the performance result of sim- 
ulator is shown in section 5. 

2 Design Verification Methodology 

2.1 Verification FIow 
In our top-down design flow of microprocessors, design is 
gradually refined and realized from the specification to the 
physical implementation. According to the description level, 
C1, Cz and C3 represent the model of microprocessor writ- 
ten in C for behavioral. micro-operational, and RTL, respec- 
tively 1111. 

Table 1: Description of CPU models in various levels 

internal bus 
combinational 
pipeline 
timing 
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As Table 1 shows, Polaris describes the exact behavior 
of x86 instruction set without the detailed architecture such 
as pipelining, superscalar instruction pairing, multiple func- 
tional units and cache. Representing a higher abstraction 
level in Polaris allows us to produce a reference model with 
very few bugs and to execute at a speed more than 150 times 
than that of the RTL C model. The speed of Polaris makes 
it possible to run the test suites consisting of several billion 
instructions on software model. This is impossible with com- 
mercial cycle-based simulator or gate level HDL simulation 
even with hardware acceleration. 

For the CISC microprocessors, one macro instruction is 
subdivided into a number of micro-operations(usual1y called 
micro-code) and consumes multiple clock cycles. MCV(Mzcro 
Cotlc Vwi f i e~ )  is a CPU model in micro-operation level, 
which complements the gap between the higher level ref- 
erence model and clock cycle-based RTL model. 

The RTL C model, called StrcC which is chosen instead of 
Verilog-HDL for its speed performance, accurately describes 
the cycle-by-cycle synchronous logic behavior. Basically it is 
similar to the cycle-based simulator. But there is no need to 
translate Verilog model into intermediate C code. Descrip- 
tion of the design itself is a construction of the simulator. 

The speed advantage of C over the general-purpose HDL 
is liken to the assembly programming over the compiler- 
assisted high level language programming. Even though the 
hardware description using C is more difficult than the well- 
formalized VHDL or Verilog in many aspects, its simulation 
speed is very fast than the general-purpose commercial sim- 
ulators and compensates the difficulties of C modeling. 

2.2 Inter-model Consistency Check 
An important problem in the top-down design flow is to 
maintain the consistency between the consecutive design lev- 
els. In traditional approaches [12, 13, 14, 151, traces of both 
a reference model and RTL model are dumped during the 
simulation. After finishing the long simulation, the post- 
analysis tool compares two trace files. Inconsistencies in 
registers, flags and memory map are reported for debug- 
ging. Usually for a long simulation, trace file size may 
be larger than several Giga bytes. Moreover, dumping of 
signal trace overburdens the simulation speed by 5 or 6 
times. We use a dynamic inter-model consistency check us- 
ing IPC(1nterprocess Communications) mechanism in UNIX 
during the co-simulation of StreC(RTL model) and MCV 
(reference model) rather than the static comparison after 
the simulation is finished. It neither requires large trace 
files nor degrades the simulation speed. 

3 StreC : RTL C model 

3.1 Cycle-based Synchronous Circuit De- 
sign 

StreC accurately describes the cycle-by-cycle synchronous 
logic behavior taking care of signal precedence relation as 
shown in Fig. 1. The signal types are classified into three 
according to the timing when the signal is evaluated and up- 
dated with clocking: WIRE for combinational signals, REG 
for edge-triggered flip-flops, and LATCH for level-transparent 
latches. Combinational signals are immediately evaluated 
for varying inputs. Flip-flops are updated only at  the clock 
edge and are preserved until the next clock edge, even though 
there are input variations. Latch has special characteris- 
tics: transparent duration and latched duration. During 
the transparent duration, the latch output follows the in- 
put,  otherwise the output preserves the value of the input 
at  the time of the most recent latching edge. 

P:E P!L P2E P:L philLedge0 ‘ assignReg(FF1); 
, , , I  

i j l I  

phl lA i : r  assignReg(FF2); assignReg(FF5); 

p h I 2 A  bhil_lavel() 

Comb1 = fI(FF1); 
Comb? E n(FF1,FFZ); 

O C o m b i n a t i o n a l  LcgicciYslel ) Comb4= f4(FFZ,FF3,Comb3) 

hi2 edge() ‘ sssignReg(FF3); , assignReg(FF4); 
[7 Flip-nop 

hi2 level() ‘ Comb3 = f3(FF4); 
Comb4 = f4(FFZ,FF3,Comb3); 
Comb5 fS(Comb3); 

1 Latch1 = comb4; P1 E P2E P i  E 

Figure 1: In 2-phase clocking scheme, phi1 is simply as- 
sumed to be the complement of phi2 in cycle-based simula- 
tion : (a)Signal Flow Graph(SFG) showing the signal rela- 
tions, (b) Symbols for SFG and (c) the corresponding RTL 
C description. 

We use a symmetric two-phase clocking(phi1 and phi2). 
In StreC, all the flip-flops are updated “simultaneously” at  
the clock edge(cal1ed P1E or P2E) without any mutual de- 
pendency using special function, assignReg, while the com- 
binational logics are evaluated in the middle of clock cy- 
cle(cal1ed P1L and P2L), and the latches are evaluated dur- 
ing only one of clock level i .e. ,  P1L or P2L. According to 
our experiences, the classification of evaluation time into 
the edge and the level, makes the debugging simpler than 
the commercial cycle-based simulator which evaluates all the 
signals only at  clock edges[6]. 

Fig. 2 shows a top module of StreC, while loop increases 
a c l o c k  counter and calls all the subroutines for each unit in 
succession at  the two clock edges and two clock levels. All 
the subroutines for the units in HK486 are shown in Fig. 5. 
Hardware interrupts and IPC differences are checked a t  every 
cycle. The SAVE, TRACE, RESTART, and PROFILE feature of 
StreC will be explained in the next section. 

In StreC, circuit evaluation is implemented as a func- 
tion call, therefore, even though there are changes for input 
signals, the output value remains fixed until the function 
call. Since the flip-flops are updated simultaneously only at  
the clock edge, the sequence of function calls for the flip- 
flops at  P1E and P2E does not matter. But special care 
should be taken to allow the events to flow correctly be- 
tween sub-functions to maintain the precedence relation of 
the combinational logic circuits because the StreC is not 
an event-driven simulator. Signal Flow Graph(SFG), which 
represents the precedence and temporal relations between 
signals in Fig. 1, is very useful to determine the sequence of 
the combinational and latch signals. SFG is also very useful 
for correcting many tricky timing problems which, although 
unveiled during the cycle-based simulation, can later be de- 
tected as hardware bugs. 

The sequence of description for the combinational signals 
in StreC is similar to the levelizing mechanism in the lev- 
elized compiled-code(LCC) simulator[l6], i .e . ,  

1. Assign level(s) = 0 to each primary input signal s 
2. Assign leueZ(s;) to each other signal s; such that 

level(s;) = 1 + MAX{level(sj)} for all sj E Fanin(si) 

A sequence of signals is determined such that no values 
are referred to before they have been calculated. The se- 
quence of signals within the same level is arbitrary because 
no inter-dependency exists between them. Some latches and 
combinational signals can be multiply scheduled because of 
inter-block cross referencing. This will be explained later in 
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StreC-main(lPC,SAVE,TRACE,RESTART,PROFILE); 
{ if( Restart ) Load-Status(); 

while( !simDone ){ 
if(SAVE) Save-Status(); 
clock++; 
I* phi1 phase *I 
P1 €-evaluation(); 
Update-FlipFlop(); 
P1 L-evaluation(); 

I* phi2 phase *I 
PPE-evaluate(); 
Update-FlipFlop(); 
PPL-evaluation(); 

if( microcode == END){ 
if( IPC) IPC-error-check(); 
Instruction-count ++; 

1 
1 

1 

Figure 2: Top module of StreC increases the clock counter 
for each clock cycle and calls C subroutines for PlE, P lL ,  
P2E and P2L in sequence. 

more detail. The sequence of function call is determined in 
a static fashion after the signal levelizing. This is different 
from the event-driven simulator, where dynamic scheduling 
overhead significantly decreases the simulation speed. 

3.2 C ~ Model Refining and Optimization 
In the modeling of RTL circuit using C, there are several 
problems to be considered, which are static signal schedul- 
ing, combinational or asynchronous loop detection, regis- 
ter identification, cycle stealing, and fan-in/fan-out timing 
problems which, although unveiled during the cycle-based 
simulation, can later be detected as hardware bugs. 

Lifc Ti" An&zer(LTA) generates the SFG from the 
RTL circuit descriptions and identifies the signal type(flip- 
flop, latch, and combinational signal) and lifetime for each 
signals, a.(:., when the fan-in signals are generated and when 
the signals are used as fan-out. 

Using the lifetime information, Cleanwr detects the de- 
scription rule violation, such as combinational logic descrip- 
tion at  clock edges, precedence relations violation for latches 
or combinational signals and combinational or asynchronous 
loops. And CEeanm- does the further optimization such as 
transformation from flip-flop to latch, cycle-stealing, and 
rescheduling. The pseudo code for LTA and Cleaner is shown 
in Fig. 3 .  

SFG is the key to both LTA and Cleaner. For datap- 
ath blocks, each element in datapath is represented as one 
vertex in SFG, while for control blocks, one vertex in SFG 
represents a cluster with many strongly-coupled elements. 
This clustered SFG also speeds up the circuit analysis and 
optimization process. Moreover, it provides the designers 
with the high-level view of circuit structure. 

After constructing the refined and optimized model ( 
shown as C* in Fig. 3) ,  it is one-to-one translated into syn- 
thesizable Verilog code by CZV(C-to-Verilog Compiler) and 
datapath schematics for the following physical implemen- 
tation and timing simulation. The flow for RTL C model 
refining, optimization, verification and Verilog code genera- 
tion is shown in Fig. 4. 

To describe the synchronous circuit in C is not a simple 
job, it requires cautious efforts. But most of the design time 
is consumed by simulation time rather than the description 

main(); 
I input(C); 

I'LTA 'I 
sfg-generationo; 
signal-type-identification(); 
lifetime-analysis(); 

I* Cleaner *I 
StreC-description-rule-check(); 
io-t i m in g-c hec k() ; 
com binational-Latch-IevelizingO; 
redundant-FF-Latch-removal(); 
FF-to-Latch-transformation(); 
cycle-stealing-anal ysis(); 
rescheduling(); 
output(C); 

1 

Figure 3: LTA(SFG generation) and Cleaner(refine and op- 
timize) improves the C model 

of design itself 

......... i ...... ....... LTA 

.............. Cleaner 

StreC .............. 

.............. ! translation ! c2v 

..................... 

Figure 4: Design flow from RTL C model to synthesizable 
Verilog code 

3.3 Scheduling problem in StreC 
Intra-unit scheduling is fully automated with the help of 
SFG, while the inter-unit scheduling is very complex. Of- 
ten the long sequence of function calls makes an uninten- 
tional combinational loop or asynchronous loop which con- 
tains one transparent latch, which is a main trouble maker 
in the cycle-based simulation. 

Some units are scheduled multiple times because of inter- 
unit precedence relations. As shown in Fig. 5, during P1E 
and P2E, the sequence among C ,  D, F, S, K, B, X, T and 
G unit does not matter, while during P1L and P2L, the 
sequence among sub-functions is very critical to  the exact 
function evaluation. Note that the X unit is scheduled three 
times at PlL, i .e., X41L-1, XPlL-2, X91L-3. Especially 
in P2L, the scheduling is more complex. Most units are 

85 



multiply scheduled: Cunit - three times, while D, F, G, K,  
and X unit are scheduled twice. 

P1 E-evaluate i P i  L-evaluate 
CunltLPlE ~ C""iI_PlL 

j S""lI~PlL 0unit.PlE 
! DunitLPlL Funit-PlE 

PZE-evaluate 1 PZL-evaluate 
; X""it_PZL_l 

; C""lt.P2L_l I 
' K~nllLP2L~l 

Gunll-PPL-1 

CunitP2E 
Dunll.P2E 
FunitLPZE 
Sunil_PPE 

XunlI_PZE 
TunitLPZE 
GunlI_PZE 

~ Kunit-P1L Kunil_PiE 
BunitLPlE ! B""iI_PlL 
XuniI.PlE ~ X""itLPlL~1 
TunilLPlE i GunitLPlL 
GunitLPIE i X""iI_PiL-I 

! TunitLPlL 

DunitLPZL~I 
C""it_PZL.Z 
C""l1 P2L 3 

KunilLPZE 
BunitLPZE 

Funlt~PZL~l 
DunltP2LZ 
S""it..PPL 
Funit P2L 2 

Figure 5: Statically-scheduled sequence of sub-function for 
sub units in HK486. There is no precedence relation for the 
function calls in P1E and P2E, while the sequences for P1L 
and P2L are critical to the exact function evaluation. 

In Fig. 6, the sub-function log ic  is scheduled five times 
in P2L. At first, some signals generated in log ic ,  are used 
at  fsm-cl. The newly generated signals from fsm-t1 go to 
log ic  again, and log ic  makes other signals to be used 
by m i r ,  and so on. This complex schedule is due to the 
poor partition of the whole circuits. If some of logic blocks 
are migrated or replicated into other blocks, some unnec- 
essarily complex signal handshaking need not occur. Using 
careful analysis of the resultant SFG, most complex signal 
handshaking can be localized. 

LOGIC FSM CL 

P2L 

levell 
level2 

level3 

level4 

level5 

level6 

level7 

level8 

level9 

levella 

Figure 6: Multiple scheduling of log ic  block in Cunit dur- 
ing P2L 

3.4 Flip-flop and Latch minimization in StreC 
As an example of C model optimization, consider an exam- 
ple mirco-sequencer shown in Fig. 7 which contains five 
latches and three flip-flops. With a careful analysis of SFG 
using Cleaner, four latches and one flip-flop guarantee the 
same functionality as the original description as shown in 
Fig. 8(b). Moreover, this refined model(C*) both improves 
simulation speed and clarifies the description for the design- 

Note the signal adderout in Fig. 8, it utilizes a cycle- 
stealing profit of marout. By requiring a signal to arrive 
early, combinational logic may borrow time across the cycle 
boundaries implied by latches. This ability to borrow time 
provides more margin in the critical paths. Cycle-stealing 
analysis is an important feature of Cleaner. 

ers. 

3.5 Combinational Loop in StreC 
Latch identification is needed to  break the asynchronous 
loop or combinational loop. During the early stage of func- 
tional design, designers do not worry about the use of flip- 
flop or latch in detail. For example, in the description of 

~ 
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if --- e l s e  statement, if they do not specify else state- 
ment explicitly, logic synthesis tools consider it as a latch 
rather than a don,'t care value. In such cases, Cleaner re- 
ports a warning message 'com,Lzn,ation,al loop ' and modifies 
the description with flip-flops. 

marlatchl = marlatchl; 
alulatch = adderout; 

/' LATCH '/ 

1 if (saddr-cp) saddr = alulatch?; 

rzL$Litch vector sel) ( 
E::: h 8 9  i $9:: : 8% 
a %# i : g~$rodc. 

1 default : vector = UNKNOWk: 

I 
marout = marmux; 
marlatch2 = marmux r LATCH ' I  , adderout = (marlatch + 1) & OxFFF; 

..mMV . dderou .............. 1 Ab/ 

P2E 

Figure 7: Example mirco-sequencer: (a) C-model and (b) 
the corresponding SFG with redundant latches and flip-flops 

saddrZdc 

... 

P2L 

..... -&.. - I  

O l / /  I 

. 2-4 adderout ...................... 

..a ................ 

.. h adderout 

P2E 

(a) (b) 

Figure 8: Example mirco-sequencer: Resultant SFG after 
(a) refining and (b) optimizing 

Cleaner searches the SFG hierarchically to detect pure 
combinational loops or asynchronous loops with one sin- 
gle latch. If any inter-block global asynchronous loops are 
found, then the latch should be transformed into flip-flop or 
another latch clocked in neighboring clock phase should be 
inserted inside the loop. In the case of HK486 design, six 
complex asynchronous loops were found during the signal 
flow analysis. 

Fig. 9 shows the datapath example with an asynchronous 
loop. If delay(Comb1 + Comb2 + Combs) < Tcycle, there is 
no problem for Loop-1 even without latch Lz. But Loop-2 
constructs an asynchronous loop during phi2 clock phase and 
leads to the malfunction such as racing condition. Cleaner 
detects this asynchronous loop and proposes some remedies 
to guarantee the correct operations. In this example, P1L 
latch LZ is inserted in Loop-2. In Fig. 9, it can be seen there 
is no timing problem in Loop-2 with the addition of a new 
P1L latch, i.e., it does not affect the correct operations of 
other circuits. 



s b u e z s s  

I violation 

(a) Circuit 

reqf f 

(b) SFG 

Figure 9: Example prefetch-dpath : (a) datapath with 
asynchronous loop : shadowed latch L2 was inserted after C 
model refining to break the asynchronous loop and (b) the 
corresponding SFG : C o m b l ,  Comb2 and Combs represent 
two multiplexers and one adder, respectively. 

4 Productivity Issues for Simulators 

4.1 Save-and-Restartability of StreC 
If an error is detected, designers then simulate once again 
from the first instruction to the bug point with the signal 
trace dumped. After the debugging, designers modify the 
source code, compile and re-simulate from the first instruc- 
tion. This has been a tedious but unavoidable process in 
the traditional simulator. In our experience, the simulation 
time is as much as 15 times that of the debugging itself in a 
traditional simulator for the microprocessor level design. 

However, StreC saves the internal states at  the comple- 
tion of every K instructions periodically. This is quite differ- 
ent from the signal dump, i . e . :  only the snapshots of flip-flop 
signals are saved rather than long time trace for all signals. 
This makes it possible to restart simulation from the arbi- 
trary point by loading the saved snapshot. When an error is 
detected, we rewind the simulation time only by a little and 
re-simulate for the small time interval which may be enough 
for debugging instead of re-simulation from the very begin- 
ning to dump the signal trace. After debugging, we load the 
snapshot of CPU states and restart from the “safe” region 
which was not affected by a bug. The saved snapshot can 
be modified for the addition of new signals or intentionally 
to  minimize the simulation time. 

As most trivial bugs are detected and design becomes 
stabilized, the minor modifications of design have little ef- 
fects on the CPU state. Restartability plays a key role to 
obtain the short turnaround time by reducing the redundant 
simulation. Using the ‘~Saae-nnd-r~startabilit?l” feature of 
StreC, the total simulation time is minimized to 30% of the 
traditional simulation approach without restartability. 

4.2 Cost of Debugging 
Most of bugs found during RTL simulation result from the 
interaction between units under the various combinations of 
events. As these bugs are difficult to detect at  the unit level 
test, designers integrate all units without the assurance that 
each of them is error-free. However, when the test vectors 
are applied to the fully integrated system-level design, the 
amount of simulation time soars, significantly degrading the 
design turnaround. In the debugging of Kunit in the HK486 
design, about 86 % of all the bugs were found before the 
integration or during the integration, while the 14% was 
fixed during the full-chip system-level simulation after the 
full integration. 

+. Bug Detected 
Number 01 i n ~ l r ~ ~ t i o n ~  
executed (umt: Million) 

1“ 

R 5 

Time ( d a p  -* 
Real mode Tesl Prolmed mode Test ~\ppl,cat,onr,Window3.1) 

Figure 10: StreC debugging curve with system-level simula- 
tion 

Fig. 10 shows the debugging curve with large test vectors 
after the full integration of RTL design. During the system- 
level simulation, many bugs were detected a t  an early phase 
as shown in Fig. 10. Small percent,age, Z.C., 15 %, of bugs re- 
maining to the end of the design process occupies most of the 
simulation time(50% of total debugging time). Therefore, it 
is very important that basic unit tests should be enhanced 
in the earlier design phase to  shorten the total verification 
time. Sometimes a ‘careless’ design modification may lead 
to malfunction of other units shown as a deep ‘canyon’ at 
the execution of 17 million instructions as shown in Fig. 10. 
Regression tests should run in accompany with the frontier 
simulation in order to guarantee that proposed bug correc- 
tion did not corrupt the otherwise-correct behavior of other 
units. 

This “debugging-and-simulation” can become an endless 
loop. The criteria which guarantees the bug-free tape-out 
with high confidence level may be a “no-bug-detected” re- 
port by long test vectors for a specified period of time. But 
it is not enough. Reports on the coverage statistics of test 
vectors are necessary to determine what percentage of be- 
haviors were covered and what behaviors are to be covered. 
The test coverage[ll, 12,  13, 14, 151 probably is the most im- 
portant measure of the design quality with a large volume 
of test suites. “Profile” feature of StreC gives test coverage 
metrics such as instruction coverage, micro-operation mix, 
FSM transition counts, pipeline stall count, and interface 
protocol coverage. These coverage metrics are used subse- 
quently to improve the quality of test vectors and gives the 
designers a feeling for the overall effectiveness of test strat- 
egy. Without meaningful test coverage metric, all simulation 
time is wasted by testing the cases that are no longer needed 
to be tested, while some cases are never excited. 
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5 Result and Discussion 

We applied the proposed design and verification method- 
ology to  HK486 microprocessor being designed at  KAIST 
which is an intel 80486-compatible microprocessor. HK486 
consists of 32-bit pipelined integer unit, 64-bit floating point 
unit and 8 Kbyte cache. 

Most of the control logic and datapath blocks were built 
from standard-cell and datapath library, while area and time- 
critical blocks such as cache, TLB(Trans1ation Look-ahead 
Buffer), shifter, adder and clock generator were designed 
with full-custom layout. Total 1.25 million transistors were 
integrated in about 1.7 x 1.7 cm2 area using 0.8pm DLM 
CMOS process. A target working clock frequency is 60 MHz. 

In our HK486 project, there were very limited number 
of designers within the limited schedule as shown in Fig. 11. 
One designer wrote the instruction level behavior model, one 
wrote the micro-operation level model, one wrote the system 
board model and four designers wrote the RTL C model. 
But using an efficient design verification methodology, total 
several billion cycles were simulated until the tape-out. MS- 
DOS and Windows-3.1 were successfully booted on the RTL 
C model as shown in Fig. 12. About five Sparc workstations 
are used in the design and verification of HK486. 

Table 2 shows the simulation time needed to boot oper- 
ating systems with the comparison of the simulation speeds 
between various C models and Verilog for the case of HK486. 
The simulation speed of proposed RTL C model is faster 
than the commercial event-driven Verilog RTL simulator 
by about 140 times. Enormous speed advantage of StreC 
comes from the cycle-based logic evaluation. In the cycle- 
based simulator, the sequence of logic evaluation is deter- 
mined completely in the static fashion during the compile 
time and the redundant signal transitions are not evaluated. 
This gives no expensive overhead of event scheduling. 

Even though StreC is very fast, there are still rooms 
for further speed up. Recently, there are approaches[l] to 
employ the Binary Decision Diagram(BDD) techniques to 
achieve the speed-up in the cycle-based simulator using the 
BDD’s fast function evaluation feature. 

In dealing with large circuits where the complete BDD 
cannot be built due to the explosion of BDD size, we can 
construct BDD in terms of internal nodes rather than pri- 
mary inputs. When we construct SFG for RTL C model, the 
combinational functions are clustered into sub-circuit whose 
fan-ins are logically independent. The translation of StreC 
into BDD-based StreC is now under way to speed up the 
function evaluation with less memory requirement. 

execution 
speed(CPS) 

Model 

Table 2:  Comparison of simulation speed for booting 
DOS(460,000) and Windows-3.1(20,000,000 instructions) 
(CPS: Cvcles Per Second) : * is the estimated time. 
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Ficure 11: HK486 design milestone 

Figure 12: Screen image showing the successful booting 
of Windows-3.1 using StreC, which took 48 hours running 
about 20 million instructions on Sparc-20. 

6 Conclusion 

A C-based RTL design and verification methodology for 
complex microprocessor is described in this paper. It is fo- 
cused on fast simulation to remove the logical errors at an 
early design stage. The cycle-based synchronous circuit de- 
scription based on C is more efficient in terms of simulation 
time over the existing HDL simulator. This methodology 
was proven to be adequate for complex microprocessor such 
as HK486. We were able to boot real-world operating sys- 
tems and many application programs on those C-models. 
The test coverage measure and restartability concept were 
also instrumental in minimizing the verification cost. 
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