
5.1

A C-Based RTL Design Verification Methodology for Complex Microprocessor

level

C1
C?

Joon-Seo Yim, Yoon-Ho Hwang, Chang-Jae Park, Hoon Choi, Woo-Seung Yang,
Hun-Seung Oh, In-Cheol Park and Chong-Min Kyung

Department of Electrical Engineering
KAIST, Taejon, 305-701, Korea

model description I features
Polaris macro instruction behavior I register
MCV micro-operation I register

Abstract

Cr,

As the complexity of high-performance microprocessor in-
creases, functional verification becomes more and more dif-
ficult and RTL simulation emerges as the bottleneck of the
design cycle. In this paper, we suggest C language-based de-
sign and verification methodology to enhance the simulation
speed instead of the conventional HDL-based methodologies.
RTL C model(StreC7) describes the cycle-based behaviors of
synchronous circuits and is followed by model refining and
optimization using LifeTime Analyzer(LTA) and Cleanscr.
The simulation speed of cycle-based C model makes it pos-
sible to test the RTL design with the L‘real-world” applica-
tion programs in the order-of-magnitude faster speed than
the commercial event-driven simulators. Using the proposed
functional verification methodology, HK486, an intel 80486
- compatible microprocessor was successfully designed and
verified.

internal bus

internal bus
StreC clock cycle-based RTL register(FF,latch)

Phil edge, Phil level
Phi2 edge, Phi2 level combinational

1 Introduction

The advancement of semiconductor technology has made it
feasible to integrate more than ten million transistors on
a single chip and to operate at a clock speed more than
300MHz . This astounding design complexity has resulted in
the verification challenge of microprocessor both in academia
and industry[l, 2, 31. The hardware emulation[4], hard-
ware acceleration[5], formal verification[l] and cycle-based
simulation[6] have become the state-of-the-art verification
methodologies. The cost of emulation hardware is very ex-
pensive and it requires that the gate level design is already
finished. Therefore, it is generally used for the purpose of
final verification before tape-out rather than for the early
design phase. Formal verification method has been used
successfully to verify a wide variety of moderate-sized hard-
ware designs[7]. The industry is beginning to look at formal
verification as an alternative to the simulation for obtain-
ing higher assurance than is currently possible. Despite the
great increases in the number of organizations and projects
applying formal methods, formal verification is still the case
that the vast majority of potential users of formal methods
fail to become actual users[8].

The hardware description language(HDL) such as VHDL
and Verilog is a convenient method to describe a hardware
and becomes a good bridge between RTL(Register Trans-
fer Level) description and logic synthesis. But most of the

34th Design Automation Conference@
Permission t o make digital/hardcopy of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proflt
or commercial advantage, the copyright notice, the t i t le of
the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, t o
publish, to post on servers or t o redistribute t o lists, requires
prior speciflc permission and/or a fee

DAC 07, Anheim, California
0 1 0 0 7 ACM 0-80701-020-3/07/0e..$3.50

design time is consumed by simulation rather than the de-
scription itself. A cycle-based simulation[6] and compiled-
code simulator[9] shows a clear simulation performance ad-
vantage over an event-driven simulator[lO]. But, the general
purpose Verilog simulator is too slow to be used as a system-
level simulation.

In the description of the RTL synchronous circuit, we
use “C” language rather than Verilog-HDL. Therefore, there
is no need to translate Verilog model into intermediate C
code unlike cycle-based or compiled-code simulator. On the
other hand, in the descrcption of the hardware using C, de-
signers should take extreme care in considering static signal
scheduling and timing issues such as inappropriate usage of
flip-flops or latches, asynchronous, combinational loops, and
other potential timing bugs, which are not easily discov-
ered in cycle-based simulation. To eradicate the hardware-
unimplementable descriptions, we devise a “LTA(LifeTime
Analyzer)”, and “Cleaner” which refines and optimizes the
C model based on SFG(signa1 flow graph) of the RTL de-
sign. This approach removes the discrepancy between C
model and real hardware, and results in significant simula-
tion speed-up.

We will show the performance of our C-based simulator
compared to other HDL simulators using HK486, an intel
80486-compatible microprocessor as an example.

This paper is organized as follows. We describe our de-
sign verification methodology in section 2. A proposed RTL
C-based synchronous circuit design and related problems are
shown in section 3 . Section 4 deals with the productivity
issues in simulation. Finally, the performance result of sim-
ulator is shown in section 5.

2 Design Verification Methodology

2.1 Verification FIow
In our top-down design flow of microprocessors, design is
gradually refined and realized from the specification to the
physical implementation. According to the description level,
C1, Cz and C3 represent the model of microprocessor writ-
ten in C for behavioral. micro-operational, and RTL, respec-
tively 1111.

Table 1: Description of CPU models in various levels

internal bus
combinational
pipeline
timing

83

As Table 1 shows, Polaris describes the exact behavior
of x86 instruction set without the detailed architecture such
as pipelining, superscalar instruction pairing, multiple func-
tional units and cache. Representing a higher abstraction
level in Polaris allows us to produce a reference model with
very few bugs and to execute at a speed more than 150 times
than that of the RTL C model. The speed of Polaris makes
it possible to run the test suites consisting of several billion
instructions on software model. This is impossible with com-
mercial cycle-based simulator or gate level HDL simulation
even with hardware acceleration.

For the CISC microprocessors, one macro instruction is
subdivided into a number of micro-operations(usual1y called
micro-code) and consumes multiple clock cycles. MCV(Mzcro
Cotlc Vwi f i e~) is a CPU model in micro-operation level,
which complements the gap between the higher level ref-
erence model and clock cycle-based RTL model.

The RTL C model, called StrcC which is chosen instead of
Verilog-HDL for its speed performance, accurately describes
the cycle-by-cycle synchronous logic behavior. Basically it is
similar to the cycle-based simulator. But there is no need to
translate Verilog model into intermediate C code. Descrip-
tion of the design itself is a construction of the simulator.

The speed advantage of C over the general-purpose HDL
is liken to the assembly programming over the compiler-
assisted high level language programming. Even though the
hardware description using C is more difficult than the well-
formalized VHDL or Verilog in many aspects, its simulation
speed is very fast than the general-purpose commercial sim-
ulators and compensates the difficulties of C modeling.

2.2 Inter-model Consistency Check
An important problem in the top-down design flow is to
maintain the consistency between the consecutive design lev-
els. In traditional approaches [12, 13, 14, 151, traces of both
a reference model and RTL model are dumped during the
simulation. After finishing the long simulation, the post-
analysis tool compares two trace files. Inconsistencies in
registers, flags and memory map are reported for debug-
ging. Usually for a long simulation, trace file size may
be larger than several Giga bytes. Moreover, dumping of
signal trace overburdens the simulation speed by 5 or 6
times. We use a dynamic inter-model consistency check us-
ing IPC(1nterprocess Communications) mechanism in UNIX
during the co-simulation of StreC(RTL model) and MCV
(reference model) rather than the static comparison after
the simulation is finished. It neither requires large trace
files nor degrades the simulation speed.

3 StreC : RTL C model

3.1 Cycle-based Synchronous Circuit De-
sign

StreC accurately describes the cycle-by-cycle synchronous
logic behavior taking care of signal precedence relation as
shown in Fig. 1. The signal types are classified into three
according to the timing when the signal is evaluated and up-
dated with clocking: WIRE for combinational signals, REG
for edge-triggered flip-flops, and LATCH for level-transparent
latches. Combinational signals are immediately evaluated
for varying inputs. Flip-flops are updated only at the clock
edge and are preserved until the next clock edge, even though
there are input variations. Latch has special characteris-
tics: transparent duration and latched duration. During
the transparent duration, the latch output follows the in-
put, otherwise the output preserves the value of the input
at the time of the most recent latching edge.

P:E P!L P2E P:L philLedge0 ‘ assignReg(FF1);
, , , I

i j l I

phl lA i : r assignReg(FF2); assignReg(FF5);

p h I 2 A bhil_lavel()

Comb1 = fI(FF1);
Comb? E n(FF1,FFZ);

O C o m b i n a t i o n a l LcgicciYslel) Comb4= f4(FFZ,FF3,Comb3)

hi2 edge() ‘ sssignReg(FF3); , assignReg(FF4);
[7 Flip-nop

hi2 level() ‘ Comb3 = f3(FF4);
Comb4 = f4(FFZ,FF3,Comb3);
Comb5 fS(Comb3);

1 Latch1 = comb4; P1 E P2E P i E

Figure 1: In 2-phase clocking scheme, phi1 is simply as-
sumed to be the complement of phi2 in cycle-based simula-
tion : (a)Signal Flow Graph(SFG) showing the signal rela-
tions, (b) Symbols for SFG and (c) the corresponding RTL
C description.

We use a symmetric two-phase clocking(phi1 and phi2).
In StreC, all the flip-flops are updated “simultaneously” at
the clock edge(cal1ed P1E or P2E) without any mutual de-
pendency using special function, assignReg, while the com-
binational logics are evaluated in the middle of clock cy-
cle(cal1ed P1L and P2L), and the latches are evaluated dur-
ing only one of clock level i .e. , P1L or P2L. According to
our experiences, the classification of evaluation time into
the edge and the level, makes the debugging simpler than
the commercial cycle-based simulator which evaluates all the
signals only at clock edges[6].

Fig. 2 shows a top module of StreC, while loop increases
a c l o c k counter and calls all the subroutines for each unit in
succession at the two clock edges and two clock levels. All
the subroutines for the units in HK486 are shown in Fig. 5.
Hardware interrupts and IPC differences are checked a t every
cycle. The SAVE, TRACE, RESTART, and PROFILE feature of
StreC will be explained in the next section.

In StreC, circuit evaluation is implemented as a func-
tion call, therefore, even though there are changes for input
signals, the output value remains fixed until the function
call. Since the flip-flops are updated simultaneously only at
the clock edge, the sequence of function calls for the flip-
flops at P1E and P2E does not matter. But special care
should be taken to allow the events to flow correctly be-
tween sub-functions to maintain the precedence relation of
the combinational logic circuits because the StreC is not
an event-driven simulator. Signal Flow Graph(SFG), which
represents the precedence and temporal relations between
signals in Fig. 1, is very useful to determine the sequence of
the combinational and latch signals. SFG is also very useful
for correcting many tricky timing problems which, although
unveiled during the cycle-based simulation, can later be de-
tected as hardware bugs.

The sequence of description for the combinational signals
in StreC is similar to the levelizing mechanism in the lev-
elized compiled-code(LCC) simulator[l6], i .e . ,

1. Assign level(s) = 0 to each primary input signal s
2. Assign leueZ(s;) to each other signal s; such that

level(s;) = 1 + MAX{level(sj)} for all sj E Fanin(si)

A sequence of signals is determined such that no values
are referred to before they have been calculated. The se-
quence of signals within the same level is arbitrary because
no inter-dependency exists between them. Some latches and
combinational signals can be multiply scheduled because of
inter-block cross referencing. This will be explained later in

84

StreC-main(lPC,SAVE,TRACE,RESTART,PROFILE);
{ if(Restart) Load-Status();

while(!simDone){
if(SAVE) Save-Status();
clock++;
I* phi1 phase *I
P1 €-evaluation();
Update-FlipFlop();
P1 L-evaluation();

I* phi2 phase *I
PPE-evaluate();
Update-FlipFlop();
PPL-evaluation();

if(microcode == END){
if(IPC) IPC-error-check();
Instruction-count ++;

1
1

1

Figure 2: Top module of StreC increases the clock counter
for each clock cycle and calls C subroutines for PlE, P lL ,
P2E and P2L in sequence.

more detail. The sequence of function call is determined in
a static fashion after the signal levelizing. This is different
from the event-driven simulator, where dynamic scheduling
overhead significantly decreases the simulation speed.

3.2 C ~ Model Refining and Optimization
In the modeling of RTL circuit using C, there are several
problems to be considered, which are static signal schedul-
ing, combinational or asynchronous loop detection, regis-
ter identification, cycle stealing, and fan-in/fan-out timing
problems which, although unveiled during the cycle-based
simulation, can later be detected as hardware bugs.

Lifc Ti" An&zer(LTA) generates the SFG from the
RTL circuit descriptions and identifies the signal type(flip-
flop, latch, and combinational signal) and lifetime for each
signals, a.(:., when the fan-in signals are generated and when
the signals are used as fan-out.

Using the lifetime information, Cleanwr detects the de-
scription rule violation, such as combinational logic descrip-
tion at clock edges, precedence relations violation for latches
or combinational signals and combinational or asynchronous
loops. And CEeanm- does the further optimization such as
transformation from flip-flop to latch, cycle-stealing, and
rescheduling. The pseudo code for LTA and Cleaner is shown
in Fig. 3 .

SFG is the key to both LTA and Cleaner. For datap-
ath blocks, each element in datapath is represented as one
vertex in SFG, while for control blocks, one vertex in SFG
represents a cluster with many strongly-coupled elements.
This clustered SFG also speeds up the circuit analysis and
optimization process. Moreover, it provides the designers
with the high-level view of circuit structure.

After constructing the refined and optimized model (
shown as C* in Fig. 3) , it is one-to-one translated into syn-
thesizable Verilog code by CZV(C-to-Verilog Compiler) and
datapath schematics for the following physical implemen-
tation and timing simulation. The flow for RTL C model
refining, optimization, verification and Verilog code genera-
tion is shown in Fig. 4.

To describe the synchronous circuit in C is not a simple
job, it requires cautious efforts. But most of the design time
is consumed by simulation time rather than the description

main();
I input(C);

I'LTA 'I
sfg-generationo;
signal-type-identification();
lifetime-analysis();

I* Cleaner *I
StreC-description-rule-check();
io-t i m in g-c hec k() ;
com binational-Latch-IevelizingO;
redundant-FF-Latch-removal();
FF-to-Latch-transformation();
cycle-stealing-anal ysis();
rescheduling();
output(C);

1

Figure 3: LTA(SFG generation) and Cleaner(refine and op-
timize) improves the C model

of design itself

......... i LTA

.............. Cleaner

StreC

.............. ! translation ! c2v

.....................

Figure 4: Design flow from RTL C model to synthesizable
Verilog code

3.3 Scheduling problem in StreC
Intra-unit scheduling is fully automated with the help of
SFG, while the inter-unit scheduling is very complex. Of-
ten the long sequence of function calls makes an uninten-
tional combinational loop or asynchronous loop which con-
tains one transparent latch, which is a main trouble maker
in the cycle-based simulation.

Some units are scheduled multiple times because of inter-
unit precedence relations. As shown in Fig. 5, during P1E
and P2E, the sequence among C , D, F, S, K, B, X, T and
G unit does not matter, while during P1L and P2L, the
sequence among sub-functions is very critical to the exact
function evaluation. Note that the X unit is scheduled three
times at PlL, i .e., X41L-1, XPlL-2, X91L-3. Especially
in P2L, the scheduling is more complex. Most units are

85

multiply scheduled: Cunit - three times, while D, F, G, K,
and X unit are scheduled twice.

P1 E-evaluate i P i L-evaluate
CunltLPlE ~ C""iI_PlL

j S""lI~PlL 0unit.PlE
! DunitLPlL Funit-PlE

PZE-evaluate 1 PZL-evaluate
; X""it_PZL_l

; C""lt.P2L_l I
' K~nllLP2L~l

Gunll-PPL-1

CunitP2E
Dunll.P2E
FunitLPZE
Sunil_PPE

XunlI_PZE
TunitLPZE
GunlI_PZE

~ Kunit-P1L Kunil_PiE
BunitLPlE ! B""iI_PlL
XuniI.PlE ~ X""itLPlL~1
TunilLPlE i GunitLPlL
GunitLPIE i X""iI_PiL-I

! TunitLPlL

DunitLPZL~I
C""it_PZL.Z
C""l1 P2L 3

KunilLPZE
BunitLPZE

Funlt~PZL~l
DunltP2LZ
S""it..PPL
Funit P2L 2

Figure 5: Statically-scheduled sequence of sub-function for
sub units in HK486. There is no precedence relation for the
function calls in P1E and P2E, while the sequences for P1L
and P2L are critical to the exact function evaluation.

In Fig. 6, the sub-function log ic is scheduled five times
in P2L. At first, some signals generated in log ic , are used
at fsm-cl. The newly generated signals from fsm-t1 go to
log ic again, and log ic makes other signals to be used
by m i r , and so on. This complex schedule is due to the
poor partition of the whole circuits. If some of logic blocks
are migrated or replicated into other blocks, some unnec-
essarily complex signal handshaking need not occur. Using
careful analysis of the resultant SFG, most complex signal
handshaking can be localized.

LOGIC FSM CL

P2L

levell
level2

level3

level4

level5

level6

level7

level8

level9

levella

Figure 6: Multiple scheduling of log ic block in Cunit dur-
ing P2L

3.4 Flip-flop and Latch minimization in StreC
As an example of C model optimization, consider an exam-
ple mirco-sequencer shown in Fig. 7 which contains five
latches and three flip-flops. With a careful analysis of SFG
using Cleaner, four latches and one flip-flop guarantee the
same functionality as the original description as shown in
Fig. 8(b). Moreover, this refined model(C*) both improves
simulation speed and clarifies the description for the design-

Note the signal adderout in Fig. 8, it utilizes a cycle-
stealing profit of marout. By requiring a signal to arrive
early, combinational logic may borrow time across the cycle
boundaries implied by latches. This ability to borrow time
provides more margin in the critical paths. Cycle-stealing
analysis is an important feature of Cleaner.

ers.

3.5 Combinational Loop in StreC
Latch identification is needed to break the asynchronous
loop or combinational loop. During the early stage of func-
tional design, designers do not worry about the use of flip-
flop or latch in detail. For example, in the description of

~

86

if --- e l s e statement, if they do not specify else state-
ment explicitly, logic synthesis tools consider it as a latch
rather than a don,'t care value. In such cases, Cleaner re-
ports a warning message 'com,Lzn,ation,al loop ' and modifies
the description with flip-flops.

marlatchl = marlatchl;
alulatch = adderout;

/' LATCH '/

1 if (saddr-cp) saddr = alulatch?;

rzL$Litch vector sel) (
E::: h 8 9 i $9:: : 8%
a %# i : g~$rodc.

1 default : vector = UNKNOWk:

I
marout = marmux;
marlatch2 = marmux r LATCH ' I , adderout = (marlatch + 1) & OxFFF;

..mMV . dderou 1 Ab/

P2E

Figure 7: Example mirco-sequencer: (a) C-model and (b)
the corresponding SFG with redundant latches and flip-flops

saddrZdc

...

P2L

..... -&.. - I

O l / / I

. 2-4 adderout

..a

.. h adderout

P2E

(a) (b)

Figure 8: Example mirco-sequencer: Resultant SFG after
(a) refining and (b) optimizing

Cleaner searches the SFG hierarchically to detect pure
combinational loops or asynchronous loops with one sin-
gle latch. If any inter-block global asynchronous loops are
found, then the latch should be transformed into flip-flop or
another latch clocked in neighboring clock phase should be
inserted inside the loop. In the case of HK486 design, six
complex asynchronous loops were found during the signal
flow analysis.

Fig. 9 shows the datapath example with an asynchronous
loop. If delay(Comb1 + Comb2 + Combs) < Tcycle, there is
no problem for Loop-1 even without latch Lz. But Loop-2
constructs an asynchronous loop during phi2 clock phase and
leads to the malfunction such as racing condition. Cleaner
detects this asynchronous loop and proposes some remedies
to guarantee the correct operations. In this example, P1L
latch LZ is inserted in Loop-2. In Fig. 9, it can be seen there
is no timing problem in Loop-2 with the addition of a new
P1L latch, i.e., it does not affect the correct operations of
other circuits.

s b u e z s s

I violation

(a) Circuit

reqf f

(b) SFG

Figure 9: Example prefetch-dpath : (a) datapath with
asynchronous loop : shadowed latch L2 was inserted after C
model refining to break the asynchronous loop and (b) the
corresponding SFG : C o m b l , Comb2 and Combs represent
two multiplexers and one adder, respectively.

4 Productivity Issues for Simulators

4.1 Save-and-Restartability of StreC
If an error is detected, designers then simulate once again
from the first instruction to the bug point with the signal
trace dumped. After the debugging, designers modify the
source code, compile and re-simulate from the first instruc-
tion. This has been a tedious but unavoidable process in
the traditional simulator. In our experience, the simulation
time is as much as 15 times that of the debugging itself in a
traditional simulator for the microprocessor level design.

However, StreC saves the internal states at the comple-
tion of every K instructions periodically. This is quite differ-
ent from the signal dump, i . e . : only the snapshots of flip-flop
signals are saved rather than long time trace for all signals.
This makes it possible to restart simulation from the arbi-
trary point by loading the saved snapshot. When an error is
detected, we rewind the simulation time only by a little and
re-simulate for the small time interval which may be enough
for debugging instead of re-simulation from the very begin-
ning to dump the signal trace. After debugging, we load the
snapshot of CPU states and restart from the “safe” region
which was not affected by a bug. The saved snapshot can
be modified for the addition of new signals or intentionally
to minimize the simulation time.

As most trivial bugs are detected and design becomes
stabilized, the minor modifications of design have little ef-
fects on the CPU state. Restartability plays a key role to
obtain the short turnaround time by reducing the redundant
simulation. Using the ‘~Saae-nnd-r~startabilit?l” feature of
StreC, the total simulation time is minimized to 30% of the
traditional simulation approach without restartability.

4.2 Cost of Debugging
Most of bugs found during RTL simulation result from the
interaction between units under the various combinations of
events. As these bugs are difficult to detect at the unit level
test, designers integrate all units without the assurance that
each of them is error-free. However, when the test vectors
are applied to the fully integrated system-level design, the
amount of simulation time soars, significantly degrading the
design turnaround. In the debugging of Kunit in the HK486
design, about 86 % of all the bugs were found before the
integration or during the integration, while the 14% was
fixed during the full-chip system-level simulation after the
full integration.

+. Bug Detected
Number 01 i n ~ l r ~ ~ t i o n ~
executed (umt: Million)

1“

R 5

Time (d a p -*
Real mode Tesl Prolmed mode Test ~\ppl,cat,onr,Window3.1)

Figure 10: StreC debugging curve with system-level simula-
tion

Fig. 10 shows the debugging curve with large test vectors
after the full integration of RTL design. During the system-
level simulation, many bugs were detected a t an early phase
as shown in Fig. 10. Small percent,age, Z.C., 15 %, of bugs re-
maining to the end of the design process occupies most of the
simulation time(50% of total debugging time). Therefore, it
is very important that basic unit tests should be enhanced
in the earlier design phase to shorten the total verification
time. Sometimes a ‘careless’ design modification may lead
to malfunction of other units shown as a deep ‘canyon’ at
the execution of 17 million instructions as shown in Fig. 10.
Regression tests should run in accompany with the frontier
simulation in order to guarantee that proposed bug correc-
tion did not corrupt the otherwise-correct behavior of other
units.

This “debugging-and-simulation” can become an endless
loop. The criteria which guarantees the bug-free tape-out
with high confidence level may be a “no-bug-detected” re-
port by long test vectors for a specified period of time. But
it is not enough. Reports on the coverage statistics of test
vectors are necessary to determine what percentage of be-
haviors were covered and what behaviors are to be covered.
The test coverage[ll, 12, 13, 14, 151 probably is the most im-
portant measure of the design quality with a large volume
of test suites. “Profile” feature of StreC gives test coverage
metrics such as instruction coverage, micro-operation mix,
FSM transition counts, pipeline stall count, and interface
protocol coverage. These coverage metrics are used subse-
quently to improve the quality of test vectors and gives the
designers a feeling for the overall effectiveness of test strat-
egy. Without meaningful test coverage metric, all simulation
time is wasted by testing the cases that are no longer needed
to be tested, while some cases are never excited.

87

5 Result and Discussion

We applied the proposed design and verification method-
ology to HK486 microprocessor being designed at KAIST
which is an intel 80486-compatible microprocessor. HK486
consists of 32-bit pipelined integer unit, 64-bit floating point
unit and 8 Kbyte cache.

Most of the control logic and datapath blocks were built
from standard-cell and datapath library, while area and time-
critical blocks such as cache, TLB(Trans1ation Look-ahead
Buffer), shifter, adder and clock generator were designed
with full-custom layout. Total 1.25 million transistors were
integrated in about 1.7 x 1.7 cm2 area using 0.8pm DLM
CMOS process. A target working clock frequency is 60 MHz.

In our HK486 project, there were very limited number
of designers within the limited schedule as shown in Fig. 11.
One designer wrote the instruction level behavior model, one
wrote the micro-operation level model, one wrote the system
board model and four designers wrote the RTL C model.
But using an efficient design verification methodology, total
several billion cycles were simulated until the tape-out. MS-
DOS and Windows-3.1 were successfully booted on the RTL
C model as shown in Fig. 12. About five Sparc workstations
are used in the design and verification of HK486.

Table 2 shows the simulation time needed to boot oper-
ating systems with the comparison of the simulation speeds
between various C models and Verilog for the case of HK486.
The simulation speed of proposed RTL C model is faster
than the commercial event-driven Verilog RTL simulator
by about 140 times. Enormous speed advantage of StreC
comes from the cycle-based logic evaluation. In the cycle-
based simulator, the sequence of logic evaluation is deter-
mined completely in the static fashion during the compile
time and the redundant signal transitions are not evaluated.
This gives no expensive overhead of event scheduling.

Even though StreC is very fast, there are still rooms
for further speed up. Recently, there are approaches[l] to
employ the Binary Decision Diagram(BDD) techniques to
achieve the speed-up in the cycle-based simulator using the
BDD’s fast function evaluation feature.

In dealing with large circuits where the complete BDD
cannot be built due to the explosion of BDD size, we can
construct BDD in terms of internal nodes rather than pri-
mary inputs. When we construct SFG for RTL C model, the
combinational functions are clustered into sub-circuit whose
fan-ins are logically independent. The translation of StreC
into BDD-based StreC is now under way to speed up the
function evaluation with less memory requirement.

execution
speed(CPS)

Model

Table 2: Comparison of simulation speed for booting
DOS(460,000) and Windows-3.1(20,000,000 instructions)
(CPS: Cvcles Per Second) : * is the estimated time.

Machine execution time
DOS I Windows3.1

m4 9”

’+lfi-1fi;::Et
--I b

Wlnodw 3.1 and Appllcaiionn I nmlng Verlficaflon and

phasel phasc2 phascl p h a s 4
Initial Design Integration Functional Verification Physical Layout

Ficure 11: HK486 design milestone

Figure 12: Screen image showing the successful booting
of Windows-3.1 using StreC, which took 48 hours running
about 20 million instructions on Sparc-20.

6 Conclusion

A C-based RTL design and verification methodology for
complex microprocessor is described in this paper. It is fo-
cused on fast simulation to remove the logical errors at an
early design stage. The cycle-based synchronous circuit de-
scription based on C is more efficient in terms of simulation
time over the existing HDL simulator. This methodology
was proven to be adequate for complex microprocessor such
as HK486. We were able to boot real-world operating sys-
tems and many application programs on those C-models.
The test coverage measure and restartability concept were
also instrumental in minimizing the verification cost.

References
[l] A.L.Sangiovanni-Vincentelli et al., “Verification of Electronic

Systems”, 33rd DAC, pp.106-111 , 1996

121 J.Monaco et al., “Functional Verification Methodoloogy for the
PowerPC 604 Microprocessor”, 33rd DAC, pp.319-324 , 1996

[3] V.Popescu et al., “Innovative Verification Strategy Reduces De-
sign Cycle Time For High-End SPARC Processor”, 33rd DAC,
pp.311-314, 1996

[4] G. Ganapathy et al., “Hardware Emulation for Functional Veri-
fication of K5”, 33rd DAC, pp.315-318 , 1996

[5] “ZyCAD XPlus Logic Simulation”, Zycad Corporation 1994

[6] “The SpeedSim/S : Software Simulator”, SpeedSim Inc., version
2.0, 1995

[7] M.K.Srivas and Steven P. Miller. ”Applying Formal Verification
to a Commercial Microprocessor,” GHDL ’95, pp. , 1995.

[8] J.P.Bowen and M.G. Hinchey. ”Seven More Myths of Formal
Methods,” University of Cambridge Computer Laboratory Tech-
nical Report 357, pp.12, January 1995.

[9] “VCS Reference Manual”, Chronologic Simulation, version 2.0,
1993

[lo] “Verilog-XL Reference Manual”, Cadence Design System Inc.,
version 1.6, 1991

[11] J.S.Yim et al., “Design Verification of Complex Microproces-
sors’’, Proc. ASP-DAC ’97, pp.173-180, 1997

[12] R.A.Lethin et al., “MDP Design Tools and Methods”, ICCD,
pp.424-435, 1992

[13] W.Anderson, “Logical Verification of the NVAX CPU Chip De-
sign”, ICCD, pp.306-309, 1992

[14] A.Hosseini et al., “Code Generation and Analysis for the Func-
tional Verification of Microprocessors”, 33rd DAC, pp.305-310 ,
1996

[15] M.Kantrowitz et al., “I’m Done Simulating; Now What? Verifi-
cation Coverage Analysis and Correctness Checking of the DEC-
chip 21164 Alpha microprocessor”, 33rd DAC, pp.325-330 , 1996

[16] L.T.Wang et al., “SSIM: A Software Levelized Compiled-Code
Simulator”, 24th DAC, pp.2-8, 1987

88

